

Welcome to problexity documentation!

[image: _images/radars.gif]
The problexity is a python library containing the implementation of metrics describing the complexity of the classification problem. The implementation was based on the publication of Lorena et al.

You can read more about it in the User Guide.

Getting started

To use the problexity package, it will be absolutely useful to install it. Fortunately, it is available in the PyPI repository, so you may install it using pip:

pip install -U problexity

You can also install the module cloned from Github using the setup.py file if you have a strange, but perhaps legitimate need:

git clone https://github.com/w4k2/problexity.git
cd problexity
make install

API Documentation

Precise API description of all the classes and functions implemented in the module.

See the README[#1]
for more information.

Footnotes

[#1]
https://github.com/w4k2/problexity/blob/master/README.md

Quick start guide

Installation

To use the problexity package, it will be absolutely useful to install it. Fortunately, it is available in the PyPI repository, so you may install it using pip:

pip install -U problexity

To enable the possibility to modify the measures provided by problexity or in case of necessity to expand it with functions that it does not yet include, it is also possible to install the module directly from the source code. If any modifications are introduced, they propagate to the module currently available to the environment:

git clone https://github.com/w4k2/problexity.git
cd problexity
make install

Minimal processing example

The problexity module is imported in the standard Python fashion. At the same time, for the convenience of implementation, the authors recommend importing it under the px alias.

Importing problexity
import problexity as px

The library is equipped with the ComplexityCalculator calculator, which serves as the basic tool for establishing metrics. The following code presents an example of the generation of a synthetic data set – typical for the scikit-learn module – and the determination of the value of measures by fitting the complexity model in accordance with the standard API adopted for scikit-learn estimators.

Loading benchmark dataset from scikit-learn
from sklearn.datasets import load_breast_cancer
X, y = load_breast_cancer(return_X_y=True)

Initialize CoplexityCalculator with default parametrization
cc = px.ComplexityCalculator()

Fit model with data
cc.fit(X,y)

As the L1, L2 and L3 measures use the recommended LinearSVC implementation from the svm module of the scikit-learn package in their calculations, the warning “ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.” may occur. It is not a problem for the metric calculation – only indicating the lack of linear problem separability.

The complexity calculator object stores a list of all estimated measures that can be read by the model’s complexity attribute.

cc.complexity

>>> [0.227 0.064 0.000 0.478 0.012 0.225 0.070 0.042 0.043 0.296 0.084
>>> 0.025 0.178 0.912 0.741 0.268 0.569 0.053 0.002 0.033 0.047 0.122]

They appear in the list in the same order as the declarations of the used metrics, which can also be obtained from the hidden method _metrics().

cc._metrics()

>>> ['f1', 'f1v', 'f2', 'f3', 'f4', 'l1', 'l2', 'l3', 'n1', 'n2', 'n3',
>>> 'n4', 't1', 'lsc', 'density', 'clsCoef', 'hubs', 't2', 't3', 't4',
>>> 'c1', 'c2']

The problem difficulty score can also be obtained as a single scalar measure, which is the arithmetic mean of all measures used in the calculation.

cc.score()

>>> 0.203

The problexity module, in addition to raw data output, also provides two standard representations of problem analysis. The first is a report in the form of a dictionary presenting the number of patterns (n_samples), attributes (n_features), classes (classes), their prior distribution (prior_probability), average metric (score) and all member metrics (complexities), which can be obtained using the model’s report() method:

cc.report()

>>> {
>>> 'n_samples': 569,
>>> 'n_features': 30,
>>> 'n_classes': 2,
>>> 'classes': array([0, 1]),
>>> 'prior_probability': array([0.373, 0.627]),
>>> 'score': 0.214,
>>> 'complexities':
>>> {
>>> 'f1': 0.227, 'f1v': 0.064, 'f2': 0.001, 'f3': 0.478, 'f4': 0.012,
>>> 'l1': 0.433, 'l2' : 0.069, 'l3': 0.049, 'n1': 0.043, 'n2': 0.296,
>>> 'n3': 0.084, 'n4' : 0.039, 't1': 0.178, 't2': 0.053, 't3': 0.002,
>>> 't4': 0.033, 'c1' : 0.047, 'c2': 0.122,
>>> 'lsc': 0.912, 'density': 0.741, 'clsCoef': 0.268, 'hubs': 0.569
>>> }
>>> }

The second form of reporting is a graph which, in the polar projection, collates all metrics, grouped into categories using color codes:

	red – feature based measures,

	orange – linearity measures,

	yellow – neighborhood measures,

	green – network measures,

	teal – dimensionality measures,

	blue – class imbalance measures.

Each problem difficulty category occupies the same graph area, meaning that contexts that are less numerous in metrics (class imbalance) are not dominated in this presentation by categories described by many metrics (neighborhood). The illustration is built with the standard tools of the matplotlib module as a subplot of a figure and can be generated with the following source code.

Import matplotlib
import matplotlib.pyplot as plt

Prepare figure
fig = plt.figure(figsize=(7,7))

Generate plot describing the dataset
cc.plot(fig, (1,1,1))

An example of a complexity graph is shown below.

[image: _images/example_graph.png]

Footnotes

Class Imbalance Measures

	c1(X, y)

	Calculates the Entropy of Class Proportions (C1) metric.

	c2(X, y)

	Calculates the Imbalance Ratio (C2) metric.

	
problexity.classification.c1(X, y)

	Calculates the Entropy of Class Proportions (C1) metric.

\[C1=1+\frac{1}{log(n_c)}\sum^{n_c}_{i=1}p_{c_{i}}log(p_{c_{i}})\]

	Parameters:

	
	X (array-like, shape (n_samples, n_features)) – Dataset

	y (array-like, shape (n_samples)) – Labels

	Return type:

	float[#1]

	Returns:

	C1 score

	
problexity.classification.c2(X, y)

	Calculates the Imbalance Ratio (C2) metric.

\[C2=1-\frac{1}{IR}\]

	Parameters:

	
	X (array-like, shape (n_samples, n_features)) – Dataset

	y (array-like, shape (n_samples)) – Labels

	Return type:

	float[#2]

	Returns:

	C2 score

Footnotes

[#1]
https://docs.python.org/3/library/functions.html#float

[#2]
https://docs.python.org/3/library/functions.html#float

Correlation Measures

	c1(X, y[, normalize])

	Calculates the maximum feature correlationto the output (C1) metric.

	c2(X, y[, normalize])

	Calculates the average feature correlationto the output (C2) metric.

	c3(X, y[, is_optimized, normalize])

	Calculates the individual feature efficiency (C3) metric.

	c4(X, y[, normalize])

	Calculates the collective feature efficiency (C4) metric.

	
problexity.regression.c1(X, y, normalize=True)

	Calculates the maximum feature correlationto the output (C1) metric.

Measure returns maximum value out of all feature-output Spearman correlation absolute value. Higher values indicate simpler problems.

\[C1=max_{j=1,..,d}|\rho(x^j, y)|\]

	Parameters:

	
	X (array-like, shape (n_samples, n_features)) – Dataset

	y (array-like, shape (n_samples)) – Labels

	Return type:

	float[#1]

	Returns:

	C1 score

	
problexity.regression.c2(X, y, normalize=True)

	Calculates the average feature correlationto the output (C2) metric.

Measure returns average value of all feature-output Spearman correlation absolute value. Higher values indicate simpler problems.

\[C2=\sum^{d}_{j=1}\frac{|\rho(x^j, y)|}{d}\]

	Parameters:

	
	X (array-like, shape (n_samples, n_features)) – Dataset

	y (array-like, shape (n_samples)) – Labels

	Return type:

	float[#2]

	Returns:

	C2 score

	
problexity.regression.c3(X, y, is_optimized=True, normalize=True)

	Calculates the individual feature efficiency (C3) metric.

Measure is calculated based on a number of examples that have to be removed in order to obtain a high correlation value. Removes samples based on residual value of linear regression model. The is_optimized flag value allows using optimized algorithm, based on divide and conquer strategy.

\[C3=min_{j=1}^{d}\frac{n^j}{n}\]

	Parameters:

	
	X (array-like, shape (n_samples, n_features)) – Dataset

	y (array-like, shape (n_samples)) – Labels

	Return type:

	float[#3]

	Returns:

	C3 score

	
problexity.regression.c4(X, y, normalize=True)

	Calculates the collective feature efficiency (C4) metric.

It sequentially analyzes the features with the greatest correlation to the output until all the features are used or all instances are removed. Samples with low resudual value are removed. A metric is computed based on the number of samples remaining after removal procedure. By default, 0-1 interval normalization is used. The iterations limit of 1000 was introduced.

\[C4=\frac{\#\{x_i||\epsilon_i|>0.1\}_{T_l}}{n}\]

	Parameters:

	
	X (array-like, shape (n_samples, n_features)) – Dataset

	y (array-like, shape (n_samples)) – Labels

	Return type:

	float[#4]

	Returns:

	C4 score

Footnotes

[#1]
https://docs.python.org/3/library/functions.html#float

[#2]
https://docs.python.org/3/library/functions.html#float

[#3]
https://docs.python.org/3/library/functions.html#float

[#4]
https://docs.python.org/3/library/functions.html#float

Dimensionality Measures

	t2(X, y)

	Calculates the Average number of features per dimension (T2) metric.

	t3(X, y)

	Calculates the Average number of PCA dimensions per points (T3) metric.

	t4(X, y)

	Calculates the Ration of the PCA dimension to the original dimension (T4) metric.

	
problexity.classification.t2(X, y)

	Calculates the Average number of features per dimension (T2) metric.

To obtaint this measure, the number of dimensions describing the dataset is divided by the number of instances.

\[T2=\frac{m}{n}\]

	Parameters:

	
	X (array-like, shape (n_samples, n_features)) – Dataset

	y (array-like, shape (n_samples)) – Labels

	Return type:

	float[#1]

	Returns:

	T2 score

	
problexity.classification.t3(X, y)

	Calculates the Average number of PCA dimensions per points (T3) metric.

To obtain this measure, first, the number of PCA components needed to represent 95% of data variability is calculated. Then, the value is divided by the instance number in the dataset.

\[T3=\frac{m'}{n}\]

	Parameters:

	
	X (array-like, shape (n_samples, n_features)) – Dataset

	y (array-like, shape (n_samples)) – Labels

	Return type:

	float[#2]

	Returns:

	T3 score

	
problexity.classification.t4(X, y)

	Calculates the Ration of the PCA dimension to the original dimension (T4) metric.

To obtain this measure, the number of PCA components needed to represent 95% of data variability is divided by the original number of dimensions. This measure describes the proportion of relevant dimensions in the dataset.

\[T4=\frac{m'}{m}\]

	Parameters:

	
	X (array-like, shape (n_samples, n_features)) – Dataset

	y (array-like, shape (n_samples)) – Labels

	Return type:

	float[#3]

	Returns:

	T4 score

Footnotes

[#1]
https://docs.python.org/3/library/functions.html#float

[#2]
https://docs.python.org/3/library/functions.html#float

[#3]
https://docs.python.org/3/library/functions.html#float

Feature-based Measures

	f1(X, y)

	Calculates the Maximum Fisher's discriminant ratio (F1) metric.

	f1v(X, y)

	Calculates the Directional vector maximum Fisher's discriminant ratio (F1v) metric.

	f2(X, y)

	Calculates the Volume of overlapping region (F2) metric.

	f3(X, y)

	Calculates the Maximum individual feature efficiency (F3) metric.

	f4(X, y)

	Calculates the Collective feature efficiency (F4) metric.

	
problexity.classification.f1(X, y)

	Calculates the Maximum Fisher’s discriminant ratio (F1) metric.

Measure describes the overlap of feature values in each class.

\[F1=\frac{1}{1+max^{m}_{i=1}r_{f_{i}}}\]

	Parameters:

	
	X (array-like, shape (n_samples, n_features)) – Dataset

	y (array-like, shape (n_samples)) – Labels

	Return type:

	float[#1]

	Returns:

	F1 score

	
problexity.classification.f1v(X, y)

	Calculates the Directional vector maximum Fisher’s discriminant ratio (F1v) metric.

\[F1v=\frac{1}{1+dF}\]

	Parameters:

	
	X (array-like, shape (n_samples, n_features)) – Dataset

	y (array-like, shape (n_samples)) – Labels

	Return type:

	float[#2]

	Returns:

	F1v score

	
problexity.classification.f2(X, y)

	Calculates the Volume of overlapping region (F2) metric.

Describes the overlap of the feature values within the classes. The measure is determined by the minimum and maximum values of features in the class. The overlap is then calculated and normalized by the range of values in each class.

\[F2=\prod^{m}_{i}{\frac{overlap(f_i)}{range(f_i)}}\]

	Parameters:

	
	X (array-like, shape (n_samples, n_features)) – Dataset

	y (array-like, shape (n_samples)) – Labels

	Return type:

	float[#3]

	Returns:

	F2 score

	
problexity.classification.f3(X, y)

	Calculates the Maximum individual feature efficiency (F3) metric.

Measure describes the efficiency of each feature in the separation of classes. It considers the maximum value among all features.

\[F3=\min^{m}_{i=1}{\frac{n_o(f_i)}{n}}\]

	Parameters:

	
	X (array-like, shape (n_samples, n_features)) – Dataset

	y (array-like, shape (n_samples)) – Labels

	Return type:

	float[#4]

	Returns:

	F3 score

	
problexity.classification.f4(X, y)

	Calculates the Collective feature efficiency (F4) metric.

The measure describes an overview of how the features work together. The instances separated by the most discriminant feature that was not used already are excluded from the further analysis. The process continues until all instances are classified or all features are used. The measure is calculated according to the number of instances in the overlapping region after all features were used and the total number of samples.

\[F4=\frac{n_o(f_{min}(T_l))}{n}\]

	Parameters:

	
	X (array-like, shape (n_samples, n_features)) – Dataset

	y (array-like, shape (n_samples)) – Labels

	Return type:

	float[#5]

	Returns:

	F4 score

Footnotes

[#1]
https://docs.python.org/3/library/functions.html#float

[#2]
https://docs.python.org/3/library/functions.html#float

[#3]
https://docs.python.org/3/library/functions.html#float

[#4]
https://docs.python.org/3/library/functions.html#float

[#5]
https://docs.python.org/3/library/functions.html#float

Geometry Measures

	l3(X, y[, normalize])

	Calculates the nom-linearity of a linear regressor (L3) measure.

	s4(X, y[, normalize])

	Calculates the non-linearity of a nearest neighbor regressor (S4) measure.

	t2(X, y)

	Calculates the average number of examples per dimension (T2) measure.

	
problexity.regression.l3(X, y, normalize=True)

	Calculates the nom-linearity of a linear regressor (L3) measure.

Linearly interpolates both input (X) and output (y) values of each pair of samples with similar output values. Generated l=n-1 synthetic samples and then measures the mean squared error of a linear regressor, fitted with original data and evaluated on synthetic points. By default performs a normalization of samples.

\[L3=\frac{1}{l}\sum_{i=1}^{l}(f(x'_i) - y'_i)^2\]

	Parameters:

	
	X (array-like, shape (n_samples, n_features)) – Dataset

	y (array-like, shape (n_samples)) – Labels

	Return type:

	float[#1]

	Returns:

	L3 score

	
problexity.regression.s4(X, y, normalize=True)

	Calculates the non-linearity of a nearest neighbor regressor (S4) measure.

Linearly interpolates both input (X) and output (y) values of each pair of samples with similar output values. Generated l=n-1 synthetic samples and then measures the mean squared error of a nearest neighbor regessor, fitted with original data and evaluated on synthetic points. By default performs a normalization of samples.

\[S4=\frac{1}{l}\sum_{i=1}^{l}(NN(x'_i) - y'_i)^2\]

	Parameters:

	
	X (array-like, shape (n_samples, n_features)) – Dataset

	y (array-like, shape (n_samples)) – Labels

	Return type:

	float[#2]

	Returns:

	S4 score

	
problexity.regression.t2(X, y)

	Calculates the average number of examples per dimension (T2) measure.

Returns number of samples per number of features. Higher values indicate simpler problems.

\[T2=\frac{n}{d}\]

	Parameters:

	
	X (array-like, shape (n_samples, n_features)) – Dataset

	y (array-like, shape (n_samples)) – Labels

	Return type:

	float[#3]

	Returns:

	T2 score

Footnotes

[#1]
https://docs.python.org/3/library/functions.html#float

[#2]
https://docs.python.org/3/library/functions.html#float

[#3]
https://docs.python.org/3/library/functions.html#float

Linearity Measures

Classification measures

	l1(X, y)

	Calculates the Sum of the error distance by linear programming (L1) metric.

	l2(X, y)

	Calculates the Error rate of linear classifier (L2) metric.

	l3(X, y)

	Calculates the Non linearity of linear classifier (L3) metric.

	
problexity.classification.l1(X, y)

	Calculates the Sum of the error distance by linear programming (L1) metric.

Uses Linear SVM classifier. Measures distance of incorrectly classified samples from the SVM hyperplane.

\[L1=\frac{SumErrorDist}{1+SumErrorDist}\]

	Parameters:

	
	X (array-like, shape (n_samples, n_features)) – Dataset

	y (array-like, shape (n_samples)) – Labels

	Return type:

	float[#1]

	Returns:

	L1 score

	
problexity.classification.l2(X, y)

	Calculates the Error rate of linear classifier (L2) metric.

Returns error rate of Linear SVM classifer used within the dataset.

\[L2=\frac{\sum^{n}_{i=1}I(h(x_i)\neq y_i)}{n}\]

	Parameters:

	
	X (array-like, shape (n_samples, n_features)) – Dataset

	y (array-like, shape (n_samples)) – Labels

	Return type:

	float[#2]

	Returns:

	L2 score

	
problexity.classification.l3(X, y)

	Calculates the Non linearity of linear classifier (L3) metric.

Linearly interpolating instances of each class generate the additional instances of the problem, which are used to calculate this measure. The class of original instances determines the label of an augmented point. The Linear SVM classifier is used to classify the synthesized points of the dataset. The number of synthetic points is equal to the original dataset size.

\[L3=\frac{1}{l}\sum^{l}_{i=1}I(h_T(x'_i) \neq y'_i)\]

	Parameters:

	
	X (array-like, shape (n_samples, n_features)) – Dataset

	y (array-like, shape (n_samples)) – Labels

	Return type:

	float[#3]

	Returns:

	L3 score

Regression measures

	l1(X, y[, normalize])

	Calculates the mean absolute error (L1) metric.

	l2(X, y[, normalize])

	Calculates the residuals variance (L2) metric.

	
problexity.regression.l1(X, y, normalize=True)

	Calculates the mean absolute error (L1) metric.

Measure returns average error of linear regression model. By default performs a 0-1 interval normalization.

\[L1=\sum_{i=1}^{n}\frac{|\epsilon_i|}{n}\]

	Parameters:

	
	X (array-like, shape (n_samples, n_features)) – Dataset

	y (array-like, shape (n_samples)) – Labels

	Return type:

	float[#4]

	Returns:

	L1 score

	
problexity.regression.l2(X, y, normalize=True)

	Calculates the residuals variance (L2) metric.

Measure returns average of squared residuals of linear regression model. By default performs a 0-1 interval normalization.

\[L2=\sum_{i=1}^{n}\frac{\epsilon_i^2}{n}\]

	Parameters:

	
	X (array-like, shape (n_samples, n_features)) – Dataset

	y (array-like, shape (n_samples)) – Labels

	Return type:

	float[#5]

	Returns:

	L2 score

Footnotes

[#1]
https://docs.python.org/3/library/functions.html#float

[#2]
https://docs.python.org/3/library/functions.html#float

[#3]
https://docs.python.org/3/library/functions.html#float

[#4]
https://docs.python.org/3/library/functions.html#float

[#5]
https://docs.python.org/3/library/functions.html#float

Neighborhood Measures

	n1(X, y)

	Calculates the Fraction of borderline points (N1) metric.

	n2(X, y)

	Calculates the Ratio of intra/extra class NN distance (N2) metric.

	n3(X, y)

	Calculates the Error rate of NN classifier (N4) metric.

	n4(X, y)

	Calculates the Nonlinearity of NN classifier (N4) metric.

	t1(X, y)

	Calculates the Fraction of hyperspheres covering data (T1) metric.

	lsc(X, y)

	Calculates the Local set average cardinality (LSC) metric.

	
problexity.classification.lsc(X, y)

	Calculates the Local set average cardinality (LSC) metric.

The measure is dependent on the distances between instances and the distances to the instances’ nearest enemies – the nearest sample of the opposite class. The number of cases that lie closer to the sample than its closest enemy is taken into account during calculation.

\[LSC=1-\frac{1}{n_2}\sum^{n}_{i=1} |LS(x_i)|\]

	Parameters:

	
	X (array-like, shape (n_samples, n_features)) – Dataset

	y (array-like, shape (n_samples)) – Labels

	Return type:

	float[#1]

	Returns:

	LSC score

	
problexity.classification.n1(X, y)

	Calculates the Fraction of borderline points (N1) metric.

The Minimum Spanning Three is generated over input instances. The measure is computed by calculating the number of edges in the MST between instances of different classes over a total number of samples.

\[N1=\frac{1}{n} \sum^{n}_{i=1}I((x_i, x_j) \in MST \wedge y_i \neq y_j)\]

	Parameters:

	
	X (array-like, shape (n_samples, n_features)) – Dataset

	y (array-like, shape (n_samples)) – Labels

	Return type:

	float[#2]

	Returns:

	N1 score

	
problexity.classification.n2(X, y)

	Calculates the Ratio of intra/extra class NN distance (N2) metric.

The measure depends on the distances of each problem instance to its nearest neighbor of the same class and the distance to the nearest neighbor of a different class. According to the proportions of those values, the final measure is calculated.

\[N2=\frac{infra_extra}{1+infra_extra}\]

	Parameters:

	
	X (array-like, shape (n_samples, n_features)) – Dataset

	y (array-like, shape (n_samples)) – Labels

	Return type:

	float[#3]

	Returns:

	N2 score

	
problexity.classification.n3(X, y)

	Calculates the Error rate of NN classifier (N4) metric.

Measure is determined by the error rate of the One Nearest Neighbor Classifier in the Leave One Out evaluation protocol.

\[N3=\frac{\sum^{n}_{i=1}I(NN(x_i) \neq y_i)}{n}\]

	Parameters:

	
	X (array-like, shape (n_samples, n_features)) – Dataset

	y (array-like, shape (n_samples)) – Labels

	Return type:

	float[#4]

	Returns:

	N3 score

	
problexity.classification.n4(X, y)

	Calculates the Nonlinearity of NN classifier (N4) metric.

The measure is determined by the error rate of k - Nearest Neighbor Classifier on synthetic points, generated by linearly interpolating original instances. The Classifier is fitted on original points and evaluated on synthetic instances.

\[N4=\frac{1}{l}\sum^{l}_{i=1}I(NN_T(x'_i) \neq y'_i)\]

	Parameters:

	
	X (array-like, shape (n_samples, n_features)) – Dataset

	y (array-like, shape (n_samples)) – Labels

	Return type:

	float[#5]

	Returns:

	N4 score

	
problexity.classification.t1(X, y)

	Calculates the Fraction of hyperspheres covering data (T1) metric.

The measure is described by the number of hyperspheres needed to cover the data divided by a number of instances. First, a hypersphere is generated for each problem sample. A sample lies in the center of the hypersphere. Its radius is dependent on the distance to the instance of another class. The hyperspheres are eliminated if a different hypersphere already covers the center instance. The elimination starts from the hyperspheres with the largest radiuses and continues to the ones with smaller radiuses. The hyperspheres that were not eliminated are taken into account during the calculation of complexity.

\[T1=\frac{\#Hyperspheres(T)}{n}\]

	Parameters:

	
	X (array-like, shape (n_samples, n_features)) – Dataset

	y (array-like, shape (n_samples)) – Labels

	Return type:

	float[#6]

	Returns:

	T1 score

Footnotes

[#1]
https://docs.python.org/3/library/functions.html#float

[#2]
https://docs.python.org/3/library/functions.html#float

[#3]
https://docs.python.org/3/library/functions.html#float

[#4]
https://docs.python.org/3/library/functions.html#float

[#5]
https://docs.python.org/3/library/functions.html#float

[#6]
https://docs.python.org/3/library/functions.html#float

Network Measures

	density(X, y)

	Calculates the Density metric.

	clsCoef(X, y)

	Calculates the Clustering Coefficient metric.

	hubs(X, y)

	Calculates the Hubs metric.

	
problexity.classification.clsCoef(X, y)

	Calculates the Clustering Coefficient metric.

Generates an epsilon-Nearest Neighbours graph. The epsilon value is set to 0.15. The edges are selected based on the Gower distance between samples, normalized to the range between 0 and 1. Edges between instances of distinct classes are removed. The neighborhood of each vertex is calculated – the instances directly connected to it. Then, the number of edges between the sample’s neighbors is calculated and divided by the maximum possible number of edges between them. The final measure is calculated based on the neighborhood of each point.

\[ClsCoef=1-\frac{1}{n}\sum^{n}_{i=1}\frac{2|e_{jk} : v_j, v_k \in N_i|}{k_i(k_i-1)}\]

	Parameters:

	
	X (array-like, shape (n_samples, n_features)) – Dataset

	y (array-like, shape (n_samples)) – Labels

	Return type:

	float[#1]

	Returns:

	Clustering Coefficient score

	
problexity.classification.density(X, y)

	Calculates the Density metric.

Generates an epsilon-Nearest Neighbours graph. The epsilon value is set to 0.15. The edges are selected based on the Gower distance between samples, normalized to the range between 0 and 1. Edges between instances of distinct classes are removed. The measure calculates the number of edges in the final graph divided by the total possible number of edges.

\[Density =1 - \frac{2|E|}{n(n-1)}\]

	Parameters:

	
	X (array-like, shape (n_samples, n_features)) – Dataset

	y (array-like, shape (n_samples)) – Labels

	Return type:

	float[#2]

	Returns:

	Density score

	
problexity.classification.hubs(X, y)

	Calculates the Hubs metric.

Generates an epsilon-Nearest Neighbours graph. The epsilon value is set to 0.15. The edges are selected based on the Gower distance between samples, normalized to the range between 0 and 1. Edges between instances of distinct classes are removed. The neighborhood of each vertex is obtained – the instances directly connected to it. The measure scores each sample by the number of connections to neighbors, weighted by the number of connections the neighbors have.

\[Hubs=1-\frac{1}{n}\sum^{n}_{i=1}hub(v_i)\]

	Parameters:

	
	X (array-like, shape (n_samples, n_features)) – Dataset

	y (array-like, shape (n_samples)) – Labels

	Return type:

	float[#3]

	Returns:

	Hubs score

Footnotes

[#1]
https://docs.python.org/3/library/functions.html#float

[#2]
https://docs.python.org/3/library/functions.html#float

[#3]
https://docs.python.org/3/library/functions.html#float

Smoothness Measures

	s1(X, y[, normalize])

	Calculates the output distribution (S1) measure.

	s2(X, y[, normalize])

	Calculates the input distribution (S2) measure.

	s3(X, y[, normalize])

	Calculates the error of nearest neighbor regressor (S3) measure.

	
problexity.regression.s1(X, y, normalize=True)

	Calculates the output distribution (S1) measure.

Calculates complexity based on a similarity of instances adjacent in minimum spanning tree (MST). Returns the average difference of labels (y), of samples connected by MST. By default a 0-1 interval normalization is performed.

\[S1=\frac{1}{n}\sum_{i,j \in MST}|y_i - y_j|\]

	Parameters:

	
	X (array-like, shape (n_samples, n_features)) – Dataset

	y (array-like, shape (n_samples)) – Labels

	Return type:

	float[#1]

	Returns:

	S1 score

	
problexity.regression.s2(X, y, normalize=True)

	Calculates the input distribution (S2) measure.

Calculates complexity based on a similarity of features (X) of instances with close output values (y). Returns the average euclidean norm of difference of input values, of samples neighbouring after sorting them by output values. By default a 0-1 interval normalization is performed.

\[S2=\frac{1}{n}\sum_{i=2}^{n}||x_i-x_{i-1}||_2\]

	Parameters:

	
	X (array-like, shape (n_samples, n_features)) – Dataset

	y (array-like, shape (n_samples)) – Labels

	Return type:

	float[#2]

	Returns:

	S2 score

	
problexity.regression.s3(X, y, normalize=True)

	Calculates the error of nearest neighbor regressor (S3) measure.

Returns mean squared error of a 1-nearest neighbor regressor, established during leave-one-out procedure. By default, the data in normalized with 0-1 interval normalization.

\[S3=\frac{1}{n}\sum_{i=1}^{n}(NN(x_i)-y_i)^2\]

	Parameters:

	
	X (array-like, shape (n_samples, n_features)) – Dataset

	y (array-like, shape (n_samples)) – Labels

	Return type:

	float[#3]

	Returns:

	S3 score

Footnotes

[#1]
https://docs.python.org/3/library/functions.html#float

[#2]
https://docs.python.org/3/library/functions.html#float

[#3]
https://docs.python.org/3/library/functions.html#float

Complexity Calculator

	ComplexityCalculator([metrics, colors, ...])

	Complexity Calculator Class.

	
class problexity.ComplexityCalculator(metrics=None, colors=None, ranges=None, weights=None, mode='classification', multiclass_strategy='ovo')

	Bases: object[#1]

Complexity Calculator Class.

A class that allows to determine all or selected metrics for a given data set. The report can be returned both as a simple vector of metrics, as well as a dictionary containing all set parameters and visualization in the form of a radar.

	Parameters:

	
	metrics (list[#2], optional (default=all the metrics avalable in problexity)) – List of classification complexity measures used to validate a given set.

	mode (string, optional (default=classification)) – Recognition task for which metrics should be calculated. Might be selected between classification and regression.

	multiclass_strategy (string, optional (default=ova)) – Strategy used for multiclass metric integration. Might be selected between ova and ovo.

	ranges (dict[#3], optional (default=all the default six groups of metrics)) – Configuration of radar visualisation, allowing to group metrics by color.

	colors (list[#4], optional (default=six-color palette)) – List of colors assigned to groups on radar visualisation.

	weights (list[#5], optional (default=list of weights, where weight are equal to 1 for all measures where simpler problems have smaller value, otherwise -1)) – List of weights taken into account in score() procedure.

	Variables:

	
	complexity (list[#6]) – The list of all the scores acquired with metrics defined by metrics list.

	n_samples (int[#7]) – The number of samples in the fitted dataset.

	n_features (int[#8]) – The number of features of the fitted dataset.

	n_classes (int[#9]) – The number of classes in the fitted dataset.

	classes (array-like, shape (n_classes,)) – The class labels.

	prior_probability (array-like, shape (n_classes,)) – The prior probability of classes.

	Examples:

	

>>> from problexity import ComplexityCalculator
>>> from sklearn.datasets import make_classification
>>> X, y = make_classification()
>>> cc = ComplexityCalculator().fit(X, y)
>>> print(cc.complexity)
[0.3158144010174404, 0.1508882806154997, 0.005974480517635054, 0.57, 0.0,
 0.10518058962953956, 0.1, 0.07, 0.135, 0.48305940839428635, 0.27, 0.11,
 1.0, 0.9642, 0.9892929292929293, 0.9321428571428572, 0.9297111755529109,
 0.2, 0.16, 0.8, 0.0, 0.0]
>>> report = cc.report()
>>> print(report)
{
 'n_samples': 100, 'n_features': 20, 'n_classes': 2,
 'classes': array([0, 1]),
 'prior_probability': array([0.5, 0.5]),
 'score': 0.377,
 'complexities':
 {
 'f1': 0.316, 'f1v': 0.151, 'f2': 0.006, 'f3': 0.57, 'f4': 0.0,
 'l1': 0.105, 'l2': 0.1, 'l3': 0.07,
 'n1': 0.135, 'n2': 0.483, 'n3': 0.27, 'n4': 0.11, 't1': 1.0, 'lsc': 0.964,
 'density': 0.989, 'clsCoef': 0.932, 'hubs': 0.93,
 't2': 0.2, 't3': 0.16, 't4': 0.8, 'c1': 0.0, 'c2': 0.0
 }
}

	
fit(X, y)

	Calculates metrics for given dataset.

	Parameters:

	
	X (array-like, shape (n_samples, n_features)) – The training input samples.

	y (array-like, shape (n_samples,)) – The training input labels.

	Return type:

	ComplexityCalculator class object

	Returns:

	ComplexityCalculator class object.

	
plot(figure, spec=(1, 1, 1))

	Returns integrated score of problem complexity

	Parameters:

	
	weights (matplotlib figure object) – Figure to draw radar on.

	spec (tuple[#10], optional (default=(1,1,1))) – Matplotlib subplot location.

	Return type:

	object[#11]

	Returns:

	Matplotlib axis object.

[image: _images/radar.png]

	
report(precision=3)

	Returns report of problem complexity

	Parameters:

	precision (int[#12], optional (default=3)) – The rounding precision.

	Return type:

	dict[#13]

	Returns:

	Dictionary with complexity report

	Examples:

	

>>> from problexity import ComplexityCalculator
>>> from sklearn.datasets import make_classification
>>> X, y = make_classification()
>>> cc = ComplexityCalculator().fit(X, y)
>>> report = cc.report()
>>> print(report)
{
 'n_samples': 100, 'n_features': 20, 'n_classes': 2,
 'classes': array([0, 1]),
 'prior_probability': array([0.5, 0.5]),
 'score': 0.377,
 'complexities':
 {
 'f1': 0.316, 'f1v': 0.151, 'f2': 0.006, 'f3': 0.57, 'f4': 0.0,
 'l1': 0.105, 'l2': 0.1, 'l3': 0.07,
 'n1': 0.135, 'n2': 0.483, 'n3': 0.27, 'n4': 0.11, 't1': 1.0, 'lsc': 0.964,
 'density': 0.989, 'clsCoef': 0.932, 'hubs': 0.93,
 't2': 0.2, 't3': 0.16, 't4': 0.8, 'c1': 0.0, 'c2': 0.0
 }
}

	
score()

	Returns integrated score of problem complexity

	Parameters:

	weights (array-like, optional (default=None), shape (n_metrics)) – Optional weights of metrics.

	Return type:

	float[#14]

	Returns:

	Single score for integrated metrics

Footnotes

[#1]
https://docs.python.org/3/library/functions.html#object

[#2]
https://docs.python.org/3/library/stdtypes.html#list

[#3]
https://docs.python.org/3/library/stdtypes.html#dict

[#4]
https://docs.python.org/3/library/stdtypes.html#list

[#5]
https://docs.python.org/3/library/stdtypes.html#list

[#6]
https://docs.python.org/3/library/stdtypes.html#list

[#7]
https://docs.python.org/3/library/functions.html#int

[#8]
https://docs.python.org/3/library/functions.html#int

[#9]
https://docs.python.org/3/library/functions.html#int

[#10]
https://docs.python.org/3/library/stdtypes.html#tuple

[#11]
https://docs.python.org/3/library/functions.html#object

[#12]
https://docs.python.org/3/library/functions.html#int

[#13]
https://docs.python.org/3/library/stdtypes.html#dict

[#14]
https://docs.python.org/3/library/functions.html#float

About us

The problexity package was created for the needs of the Department of Systems and Computer Networks[#1], Wrocław University of Science and Technology, as part of research projects regarding Multiobjective Optimization and its code is used for experimental evaluation since 2022.

The main author and maintainer of its current version is the employees of the unit, namely J. Komorniczak[#2].

[image: _images/logo.png]

Footnotes

[#1]
http://kssk.pwr.edu.pl

[#2]
https://www.kssk.pwr.edu.pl/komorniczak

Citation policy

If you use problexity in a scientific publication, We would appreciate citation to the following papers, including introduction of library and original introduction of used measures:

@article{komorniczak2023problexity,
title={problexity—An open-source Python library for supervised learning problem complexity assessment},
author={Komorniczak, Joanna and Ksieniewicz, Pawe{\l}},
journal={Neurocomputing},
volume={521},
pages={126--136},
year={2023},
publisher={Elsevier}
}

@article{lorena2018complex,
title={How complex is your classification problem},
author={Lorena, A and Garcia, L and Lehmann, Jens and Souto, M and Ho, T},
journal={A survey on measuring classification complexity. arXiv},
year={2018}
}

Footnotes

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 problexity	

 	
 	
 problexity.classification	

 	
 	
 problexity.regression	

Index

 C
 | D
 | F
 | H
 | L
 | M
 | N
 | P
 | R
 | S
 | T

C

 	
 	c1() (in module problexity.classification)

 	(in module problexity.regression)

 	c2() (in module problexity.classification)

 	(in module problexity.regression)

 	
 	c3() (in module problexity.regression)

 	c4() (in module problexity.regression)

 	clsCoef() (in module problexity.classification)

 	ComplexityCalculator (class in problexity)

D

 	
 	density() (in module problexity.classification)

F

 	
 	f1() (in module problexity.classification)

 	f1v() (in module problexity.classification)

 	f2() (in module problexity.classification)

 	
 	f3() (in module problexity.classification)

 	f4() (in module problexity.classification)

 	fit() (problexity.ComplexityCalculator method)

H

 	
 	hubs() (in module problexity.classification)

L

 	
 	l1() (in module problexity.classification)

 	(in module problexity.regression)

 	l2() (in module problexity.classification)

 	(in module problexity.regression)

 	
 	l3() (in module problexity.classification)

 	(in module problexity.regression)

 	lsc() (in module problexity.classification)

M

 	
 	
 module

 	problexity

 	problexity.classification, [1], [2], [3], [4], [5]

 	problexity.regression, [1], [2], [3]

N

 	
 	n1() (in module problexity.classification)

 	n2() (in module problexity.classification)

 	
 	n3() (in module problexity.classification)

 	n4() (in module problexity.classification)

P

 	
 	plot() (problexity.ComplexityCalculator method)

 	
 problexity

 	module

 	
 	
 problexity.classification

 	module, [1], [2], [3], [4], [5]

 	
 problexity.regression

 	module, [1], [2], [3]

R

 	
 	report() (problexity.ComplexityCalculator method)

S

 	
 	s1() (in module problexity.regression)

 	s2() (in module problexity.regression)

 	
 	s3() (in module problexity.regression)

 	s4() (in module problexity.regression)

 	score() (problexity.ComplexityCalculator method)

T

 	
 	t1() (in module problexity.classification)

 	t2() (in module problexity.classification)

 	(in module problexity.regression)

 	
 	t3() (in module problexity.classification)

 	t4() (in module problexity.classification)

 _images/example_graph.png
2

i3 0.07 i
0.04 011
n . f4
0.04 . p 0.01
n2
030 o . 3
048
n3 .
0.08 . 2
n . . 0.00
0.04
flv
t 0.06
018 o .
Isc 1
001 ® ® o023
density @
074 o
012
.
clsCoef
027
.
° a
hubs 005
057 . .
.
2 w
005 B 0.03

0.00

_images/logo.png
KSSK

_images/radar.png
3 0.02 n
0.00 . 0.02

nl h 4
0.10 0.00

or.‘fs. : // 3
n3 /
0174 /

o s
t -
|5(. =.~ \\ / // _— n

. — %018
o n--'; 32.6 o
densityg “l ’
0.98 " ‘ °

' 0.08
dsCoe®
083
.\ *a

hubs 0.03
0.88

23
0.80

0.20

=G e

_images/radars.gif
Problems with varying imbalance

2

i3 0.05 i
o o.oi o 0..07 @
2 002 055
087 @ »
IR 081
0.04 ‘ * n
M e 005
3. v
023
015 @ °
Isc fl
091 ¢ I Mm. ® os
densityq
089 °
088

csCoe®
0.44
.
hubs
0.72 L] L]

0.68

0.01 8 0.80
001

Problems with varying separability
2

13 033 i
o o.z: . 2.27 @
2 012 069
049 @ »

n e 0.88
023 * n
M e ' o012
013 o fly

o \
06l @

2 o
e O
0.93 "
csCoef® ’
046 \
B
hubs 0.00

© ° @
s 1.00

Simple, lineary separable problems

2

i3 0.00 i
o o.oz o 2.00 @
2 001 000
009 @ »
"% 0.00
0.00 * 0
e o 000
20 v
0.00
002 ® °
Isc fl
050 ® ® 0.00
084 ' o
' 0.00
csCoe® ’
044
.
. a
hubs 0.00
073 ° .
© ° @
0.05 8 020
001

nav.xhtml

 Table of Contents

 		
 Welcome to problexity documentation!

_static/logo.png
KSSK

_static/minus.png

_static/file.png

_static/plus.png

