
problexity
Release 0.5.7

J. Komorniczak

Apr 22, 2024

GETTING STARTED

1 Quick start guide 1
1.1 Installation . 1
1.2 Minimal processing example . 1

2 Class Imbalance Measures 5

3 Correlation Measures 7

4 Dimensionality Measures 9

5 Feature-based Measures 11

6 Geometry Measures 15

7 Linearity Measures 17
7.1 Classification measures . 17
7.2 Regression measures . 18

8 Neighborhood Measures 21

9 Network Measures 25

10 Smoothness Measures 27

11 Complexity Calculator 29

12 About us 33

13 Citation policy 35

14 Getting started 37

15 API Documentation 39

Python Module Index 41

Index 43

i

ii

CHAPTER

ONE

QUICK START GUIDE

1.1 Installation

To use the problexity package, it will be absolutely useful to install it. Fortunately, it is available in the PyPI repository,
so you may install it using pip:

pip install -U problexity

To enable the possibility to modify the measures provided by problexity or in case of necessity to expand it with
functions that it does not yet include, it is also possible to install the module directly from the source code. If any
modifications are introduced, they propagate to the module currently available to the environment:

git clone https://github.com/w4k2/problexity.git
cd problexity
make install

1.2 Minimal processing example

The problexity module is imported in the standard Python fashion. At the same time, for the convenience of implemen-
tation, the authors recommend importing it under the px alias.

Importing problexity
import problexity as px

The library is equipped with the ComplexityCalculator calculator, which serves as the basic tool for establishing met-
rics. The following code presents an example of the generation of a synthetic data set – typical for the scikit-learn
module – and the determination of the value of measures by fitting the complexity model in accordance with the stan-
dard API adopted for scikit-learn estimators.

Loading benchmark dataset from scikit-learn
from sklearn.datasets import load_breast_cancer
X, y = load_breast_cancer(return_X_y=True)

Initialize CoplexityCalculator with default parametrization
cc = px.ComplexityCalculator()

Fit model with data
cc.fit(X,y)

1

problexity, Release 0.5.7

As the L1, L2 and L3 measures use the recommended LinearSVC implementation from the svm module of the scikit-
learn package in their calculations, the warning “ConvergenceWarning: Liblinear failed to converge, increase the
number of iterations.” may occur. It is not a problem for the metric calculation – only indicating the lack of linear
problem separability.

The complexity calculator object stores a list of all estimated measures that can be read by the model’s complexity
attribute.

cc.complexity

>>> [0.227 0.064 0.000 0.478 0.012 0.225 0.070 0.042 0.043 0.296 0.084
>>> 0.025 0.178 0.912 0.741 0.268 0.569 0.053 0.002 0.033 0.047 0.122]

They appear in the list in the same order as the declarations of the used metrics, which can also be obtained from the
hidden method _metrics().

cc._metrics()

>>> ['f1', 'f1v', 'f2', 'f3', 'f4', 'l1', 'l2', 'l3', 'n1', 'n2', 'n3',
>>> 'n4', 't1', 'lsc', 'density', 'clsCoef', 'hubs', 't2', 't3', 't4',
>>> 'c1', 'c2']

The problem difficulty score can also be obtained as a single scalar measure, which is the arithmetic mean of all
measures used in the calculation.

cc.score()

>>> 0.203

The problexity module, in addition to raw data output, also provides two standard representations of problem analysis.
The first is a report in the form of a dictionary presenting the number of patterns (n_samples), attributes (n_features),
classes (classes), their prior distribution (prior_probability), average metric (score) and all member metrics (complex-
ities), which can be obtained using the model’s report() method:

cc.report()

>>> {
>>> 'n_samples': 569,
>>> 'n_features': 30,
>>> 'n_classes': 2,
>>> 'classes': array([0, 1]),
>>> 'prior_probability': array([0.373, 0.627]),
>>> 'score': 0.214,
>>> 'complexities':
>>> {
>>> 'f1': 0.227, 'f1v': 0.064, 'f2': 0.001, 'f3': 0.478, 'f4': 0.012,
>>> 'l1': 0.433, 'l2' : 0.069, 'l3': 0.049, 'n1': 0.043, 'n2': 0.296,
>>> 'n3': 0.084, 'n4' : 0.039, 't1': 0.178, 't2': 0.053, 't3': 0.002,
>>> 't4': 0.033, 'c1' : 0.047, 'c2': 0.122,
>>> 'lsc': 0.912, 'density': 0.741, 'clsCoef': 0.268, 'hubs': 0.569
>>> }
>>> }

The second form of reporting is a graph which, in the polar projection, collates all metrics, grouped into categories
using color codes:

2 Chapter 1. Quick start guide

problexity, Release 0.5.7

• red – feature based measures,

• orange – linearity measures,

• yellow – neighborhood measures,

• green – network measures,

• teal – dimensionality measures,

• blue – class imbalance measures.

Each problem difficulty category occupies the same graph area, meaning that contexts that are less numerous in metrics
(class imbalance) are not dominated in this presentation by categories described by many metrics (neighborhood). The
illustration is built with the standard tools of the matplotlib module as a subplot of a figure and can be generated with
the following source code.

Import matplotlib
import matplotlib.pyplot as plt

Prepare figure
fig = plt.figure(figsize=(7,7))

Generate plot describing the dataset
cc.plot(fig, (1,1,1))

An example of a complexity graph is shown below.

1.2. Minimal processing example 3

problexity, Release 0.5.7

4 Chapter 1. Quick start guide

CHAPTER

TWO

CLASS IMBALANCE MEASURES

c1(X, y) Calculates the Entropy of Class Proportions (C1) metric.
c2(X, y) Calculates the Imbalance Ratio (C2) metric.

problexity.classification.c1(X, y)
Calculates the Entropy of Class Proportions (C1) metric.

𝐶1 = 1 +
1

𝑙𝑜𝑔(𝑛𝑐)

𝑛𝑐∑︁
𝑖=1

𝑝𝑐𝑖 𝑙𝑜𝑔(𝑝𝑐𝑖)

Parameters

• X (array-like, shape (n_samples, n_features)) – Dataset

• y (array-like, shape (n_samples)) – Labels

Return type
float

Returns
C1 score

problexity.classification.c2(X, y)
Calculates the Imbalance Ratio (C2) metric.

𝐶2 = 1− 1

𝐼𝑅

Parameters

• X (array-like, shape (n_samples, n_features)) – Dataset

• y (array-like, shape (n_samples)) – Labels

Return type
float

Returns
C2 score

5

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

problexity, Release 0.5.7

6 Chapter 2. Class Imbalance Measures

CHAPTER

THREE

CORRELATION MEASURES

c1(X, y[, normalize]) Calculates the maximum feature correlationto the output
(C1) metric.

c2(X, y[, normalize]) Calculates the average feature correlationto the output
(C2) metric.

c3(X, y[, is_optimized, normalize]) Calculates the individual feature efficiency (C3) metric.
c4(X, y[, normalize]) Calculates the collective feature efficiency (C4) metric.

problexity.regression.c1(X, y, normalize=True)
Calculates the maximum feature correlationto the output (C1) metric.

Measure returns maximum value out of all feature-output Spearman correlation absolute value. Higher values
indicate simpler problems.

𝐶1 = 𝑚𝑎𝑥𝑗=1,..,𝑑|𝜌(𝑥𝑗 , 𝑦)|

Parameters

• X (array-like, shape (n_samples, n_features)) – Dataset

• y (array-like, shape (n_samples)) – Labels

Return type
float

Returns
C1 score

problexity.regression.c2(X, y, normalize=True)
Calculates the average feature correlationto the output (C2) metric.

Measure returns average value of all feature-output Spearman correlation absolute value. Higher values indicate
simpler problems.

𝐶2 =

𝑑∑︁
𝑗=1

|𝜌(𝑥𝑗 , 𝑦)|
𝑑

Parameters

• X (array-like, shape (n_samples, n_features)) – Dataset

• y (array-like, shape (n_samples)) – Labels

Return type
float

7

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

problexity, Release 0.5.7

Returns
C2 score

problexity.regression.c3(X, y, is_optimized=True, normalize=True)
Calculates the individual feature efficiency (C3) metric.

Measure is calculated based on a number of examples that have to be removed in order to obtain a high correlation
value. Removes samples based on residual value of linear regression model. The is_optimized flag value allows
using optimized algorithm, based on divide and conquer strategy.

𝐶3 = 𝑚𝑖𝑛𝑑
𝑗=1

𝑛𝑗

𝑛

Parameters

• X (array-like, shape (n_samples, n_features)) – Dataset

• y (array-like, shape (n_samples)) – Labels

Return type
float

Returns
C3 score

problexity.regression.c4(X, y, normalize=True)
Calculates the collective feature efficiency (C4) metric.

It sequentially analyzes the features with the greatest correlation to the output until all the features are used or
all instances are removed. Samples with low resudual value are removed. A metric is computed based on the
number of samples remaining after removal procedure. By default, 0-1 interval normalization is used. The
iterations limit of 1000 was introduced.

𝐶4 =
#{𝑥𝑖||𝜖𝑖| > 0.1}𝑇𝑙

𝑛

Parameters

• X (array-like, shape (n_samples, n_features)) – Dataset

• y (array-like, shape (n_samples)) – Labels

Return type
float

Returns
C4 score

8 Chapter 3. Correlation Measures

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

CHAPTER

FOUR

DIMENSIONALITY MEASURES

t2(X, y) Calculates the Average number of features per dimension
(T2) metric.

t3(X, y) Calculates the Average number of PCA dimensions per
points (T3) metric.

t4(X, y) Calculates the Ration of the PCA dimension to the orig-
inal dimension (T4) metric.

problexity.classification.t2(X, y)
Calculates the Average number of features per dimension (T2) metric.

To obtaint this measure, the number of dimensions describing the dataset is divided by the number of instances.

𝑇2 =
𝑚

𝑛

Parameters

• X (array-like, shape (n_samples, n_features)) – Dataset

• y (array-like, shape (n_samples)) – Labels

Return type
float

Returns
T2 score

problexity.classification.t3(X, y)
Calculates the Average number of PCA dimensions per points (T3) metric.

To obtain this measure, first, the number of PCA components needed to represent 95% of data variability is
calculated. Then, the value is divided by the instance number in the dataset.

𝑇3 =
𝑚′

𝑛

Parameters

• X (array-like, shape (n_samples, n_features)) – Dataset

• y (array-like, shape (n_samples)) – Labels

Return type
float

Returns
T3 score

9

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

problexity, Release 0.5.7

problexity.classification.t4(X, y)
Calculates the Ration of the PCA dimension to the original dimension (T4) metric.

To obtain this measure, the number of PCA components needed to represent 95% of data variability is divided by
the original number of dimensions. This measure describes the proportion of relevant dimensions in the dataset.

𝑇4 =
𝑚′

𝑚

Parameters

• X (array-like, shape (n_samples, n_features)) – Dataset

• y (array-like, shape (n_samples)) – Labels

Return type
float

Returns
T4 score

10 Chapter 4. Dimensionality Measures

https://docs.python.org/3/library/functions.html#float

CHAPTER

FIVE

FEATURE-BASED MEASURES

f1(X, y) Calculates the Maximum Fisher's discriminant ratio (F1)
metric.

f1v(X, y) Calculates the Directional vector maximum Fisher's dis-
criminant ratio (F1v) metric.

f2(X, y) Calculates the Volume of overlapping region (F2) met-
ric.

f3(X, y) Calculates the Maximum individual feature efficiency
(F3) metric.

f4(X, y) Calculates the Collective feature efficiency (F4) metric.

problexity.classification.f1(X, y)
Calculates the Maximum Fisher’s discriminant ratio (F1) metric.

Measure describes the overlap of feature values in each class.

𝐹1 =
1

1 +𝑚𝑎𝑥𝑚
𝑖=1𝑟𝑓𝑖

Parameters

• X (array-like, shape (n_samples, n_features)) – Dataset

• y (array-like, shape (n_samples)) – Labels

Return type
float

Returns
F1 score

problexity.classification.f1v(X, y)
Calculates the Directional vector maximum Fisher’s discriminant ratio (F1v) metric.

𝐹1𝑣 =
1

1 + 𝑑𝐹

Parameters

• X (array-like, shape (n_samples, n_features)) – Dataset

• y (array-like, shape (n_samples)) – Labels

Return type
float

11

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

problexity, Release 0.5.7

Returns
F1v score

problexity.classification.f2(X, y)
Calculates the Volume of overlapping region (F2) metric.

Describes the overlap of the feature values within the classes. The measure is determined by the minimum and
maximum values of features in the class. The overlap is then calculated and normalized by the range of values
in each class.

𝐹2 =

𝑚∏︁
𝑖

𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑓𝑖)

𝑟𝑎𝑛𝑔𝑒(𝑓𝑖)

Parameters

• X (array-like, shape (n_samples, n_features)) – Dataset

• y (array-like, shape (n_samples)) – Labels

Return type
float

Returns
F2 score

problexity.classification.f3(X, y)
Calculates the Maximum individual feature efficiency (F3) metric.

Measure describes the efficiency of each feature in the separation of classes. It considers the maximum value
among all features.

𝐹3 =
𝑚
min
𝑖=1

𝑛𝑜(𝑓𝑖)

𝑛

Parameters

• X (array-like, shape (n_samples, n_features)) – Dataset

• y (array-like, shape (n_samples)) – Labels

Return type
float

Returns
F3 score

problexity.classification.f4(X, y)
Calculates the Collective feature efficiency (F4) metric.

The measure describes an overview of how the features work together. The instances separated by the most
discriminant feature that was not used already are excluded from the further analysis. The process continues
until all instances are classified or all features are used. The measure is calculated according to the number of
instances in the overlapping region after all features were used and the total number of samples.

𝐹4 =
𝑛𝑜(𝑓𝑚𝑖𝑛(𝑇𝑙))

𝑛

Parameters

• X (array-like, shape (n_samples, n_features)) – Dataset

• y (array-like, shape (n_samples)) – Labels

12 Chapter 5. Feature-based Measures

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

problexity, Release 0.5.7

Return type
float

Returns
F4 score

13

https://docs.python.org/3/library/functions.html#float

problexity, Release 0.5.7

14 Chapter 5. Feature-based Measures

CHAPTER

SIX

GEOMETRY MEASURES

l3(X, y[, normalize]) Calculates the nom-linearity of a linear regressor (L3)
measure.

s4(X, y[, normalize]) Calculates the non-linearity of a nearest neighbor regres-
sor (S4) measure.

t2(X, y) Calculates the average number of examples per dimen-
sion (T2) measure.

problexity.regression.l3(X, y, normalize=True)
Calculates the nom-linearity of a linear regressor (L3) measure.

Linearly interpolates both input (X) and output (y) values of each pair of samples with similar output values.
Generated l=n-1 synthetic samples and then measures the mean squared error of a linear regressor, fitted with
original data and evaluated on synthetic points. By default performs a normalization of samples.

𝐿3 =
1

𝑙

𝑙∑︁
𝑖=1

(𝑓(𝑥′
𝑖)− 𝑦′𝑖)

2

Parameters

• X (array-like, shape (n_samples, n_features)) – Dataset

• y (array-like, shape (n_samples)) – Labels

Return type
float

Returns
L3 score

problexity.regression.s4(X, y, normalize=True)
Calculates the non-linearity of a nearest neighbor regressor (S4) measure.

Linearly interpolates both input (X) and output (y) values of each pair of samples with similar output values.
Generated l=n-1 synthetic samples and then measures the mean squared error of a nearest neighbor regessor,
fitted with original data and evaluated on synthetic points. By default performs a normalization of samples.

𝑆4 =
1

𝑙

𝑙∑︁
𝑖=1

(𝑁𝑁(𝑥′
𝑖)− 𝑦′𝑖)

2

Parameters

• X (array-like, shape (n_samples, n_features)) – Dataset

15

https://docs.python.org/3/library/functions.html#float

problexity, Release 0.5.7

• y (array-like, shape (n_samples)) – Labels

Return type
float

Returns
S4 score

problexity.regression.t2(X, y)
Calculates the average number of examples per dimension (T2) measure.

Returns number of samples per number of features. Higher values indicate simpler problems.

𝑇2 =
𝑛

𝑑

Parameters

• X (array-like, shape (n_samples, n_features)) – Dataset

• y (array-like, shape (n_samples)) – Labels

Return type
float

Returns
T2 score

16 Chapter 6. Geometry Measures

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

CHAPTER

SEVEN

LINEARITY MEASURES

7.1 Classification measures

l1(X, y) Calculates the Sum of the error distance by linear pro-
gramming (L1) metric.

l2(X, y) Calculates the Error rate of linear classifier (L2) metric.
l3(X, y) Calculates the Non linearity of linear classifier (L3) met-

ric.

problexity.classification.l1(X, y)
Calculates the Sum of the error distance by linear programming (L1) metric.

Uses Linear SVM classifier. Measures distance of incorrectly classified samples from the SVM hyperplane.

𝐿1 =
𝑆𝑢𝑚𝐸𝑟𝑟𝑜𝑟𝐷𝑖𝑠𝑡

1 + 𝑆𝑢𝑚𝐸𝑟𝑟𝑜𝑟𝐷𝑖𝑠𝑡

Parameters

• X (array-like, shape (n_samples, n_features)) – Dataset

• y (array-like, shape (n_samples)) – Labels

Return type
float

Returns
L1 score

problexity.classification.l2(X, y)
Calculates the Error rate of linear classifier (L2) metric.

Returns error rate of Linear SVM classifer used within the dataset.

𝐿2 =

∑︀𝑛
𝑖=1 𝐼(ℎ(𝑥𝑖) ̸= 𝑦𝑖)

𝑛

Parameters

• X (array-like, shape (n_samples, n_features)) – Dataset

• y (array-like, shape (n_samples)) – Labels

Return type
float

17

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

problexity, Release 0.5.7

Returns
L2 score

problexity.classification.l3(X, y)
Calculates the Non linearity of linear classifier (L3) metric.

Linearly interpolating instances of each class generate the additional instances of the problem, which are used to
calculate this measure. The class of original instances determines the label of an augmented point. The Linear
SVM classifier is used to classify the synthesized points of the dataset. The number of synthetic points is equal
to the original dataset size.

𝐿3 =
1

𝑙

𝑙∑︁
𝑖=1

𝐼(ℎ𝑇 (𝑥
′
𝑖) ̸= 𝑦′𝑖)

Parameters

• X (array-like, shape (n_samples, n_features)) – Dataset

• y (array-like, shape (n_samples)) – Labels

Return type
float

Returns
L3 score

7.2 Regression measures

l1(X, y[, normalize]) Calculates the mean absolute error (L1) metric.
l2(X, y[, normalize]) Calculates the residuals variance (L2) metric.

problexity.regression.l1(X, y, normalize=True)
Calculates the mean absolute error (L1) metric.

Measure returns average error of linear regression model. By default performs a 0-1 interval normalization.

𝐿1 =

𝑛∑︁
𝑖=1

|𝜖𝑖|
𝑛

Parameters

• X (array-like, shape (n_samples, n_features)) – Dataset

• y (array-like, shape (n_samples)) – Labels

Return type
float

Returns
L1 score

problexity.regression.l2(X, y, normalize=True)
Calculates the residuals variance (L2) metric.

Measure returns average of squared residuals of linear regression model. By default performs a 0-1 interval
normalization.

𝐿2 =

𝑛∑︁
𝑖=1

𝜖2𝑖
𝑛

18 Chapter 7. Linearity Measures

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

problexity, Release 0.5.7

Parameters

• X (array-like, shape (n_samples, n_features)) – Dataset

• y (array-like, shape (n_samples)) – Labels

Return type
float

Returns
L2 score

7.2. Regression measures 19

https://docs.python.org/3/library/functions.html#float

problexity, Release 0.5.7

20 Chapter 7. Linearity Measures

CHAPTER

EIGHT

NEIGHBORHOOD MEASURES

n1(X, y) Calculates the Fraction of borderline points (N1) metric.
n2(X, y) Calculates the Ratio of intra/extra class NN distance

(N2) metric.
n3(X, y) Calculates the Error rate of NN classifier (N4) metric.
n4(X, y) Calculates the Nonlinearity of NN classifier (N4) metric.
t1(X, y) Calculates the Fraction of hyperspheres covering data

(T1) metric.
lsc(X, y) Calculates the Local set average cardinality (LSC) met-

ric.

problexity.classification.lsc(X, y)
Calculates the Local set average cardinality (LSC) metric.

The measure is dependent on the distances between instances and the distances to the instances’ nearest enemies
– the nearest sample of the opposite class. The number of cases that lie closer to the sample than its closest
enemy is taken into account during calculation.

𝐿𝑆𝐶 = 1− 1

𝑛2

𝑛∑︁
𝑖=1

|𝐿𝑆(𝑥𝑖)|

Parameters

• X (array-like, shape (n_samples, n_features)) – Dataset

• y (array-like, shape (n_samples)) – Labels

Return type
float

Returns
LSC score

problexity.classification.n1(X, y)
Calculates the Fraction of borderline points (N1) metric.

The Minimum Spanning Three is generated over input instances. The measure is computed by calculating the
number of edges in the MST between instances of different classes over a total number of samples.

𝑁1 =
1

𝑛

𝑛∑︁
𝑖=1

𝐼((𝑥𝑖, 𝑥𝑗) ∈ 𝑀𝑆𝑇 ∧ 𝑦𝑖 ̸= 𝑦𝑗)

Parameters

21

https://docs.python.org/3/library/functions.html#float

problexity, Release 0.5.7

• X (array-like, shape (n_samples, n_features)) – Dataset

• y (array-like, shape (n_samples)) – Labels

Return type
float

Returns
N1 score

problexity.classification.n2(X, y)
Calculates the Ratio of intra/extra class NN distance (N2) metric.

The measure depends on the distances of each problem instance to its nearest neighbor of the same class and
the distance to the nearest neighbor of a different class. According to the proportions of those values, the final
measure is calculated.

𝑁2 =
𝑖𝑛𝑓𝑟𝑎_𝑒𝑥𝑡𝑟𝑎

1 + 𝑖𝑛𝑓𝑟𝑎_𝑒𝑥𝑡𝑟𝑎

Parameters

• X (array-like, shape (n_samples, n_features)) – Dataset

• y (array-like, shape (n_samples)) – Labels

Return type
float

Returns
N2 score

problexity.classification.n3(X, y)
Calculates the Error rate of NN classifier (N4) metric.

Measure is determined by the error rate of the One Nearest Neighbor Classifier in the Leave One Out evaluation
protocol.

𝑁3 =

∑︀𝑛
𝑖=1 𝐼(𝑁𝑁(𝑥𝑖) ̸= 𝑦𝑖)

𝑛

Parameters

• X (array-like, shape (n_samples, n_features)) – Dataset

• y (array-like, shape (n_samples)) – Labels

Return type
float

Returns
N3 score

problexity.classification.n4(X, y)
Calculates the Nonlinearity of NN classifier (N4) metric.

The measure is determined by the error rate of k - Nearest Neighbor Classifier on synthetic points, generated
by linearly interpolating original instances. The Classifier is fitted on original points and evaluated on synthetic
instances.

𝑁4 =
1

𝑙

𝑙∑︁
𝑖=1

𝐼(𝑁𝑁𝑇 (𝑥
′
𝑖) ̸= 𝑦′𝑖)

22 Chapter 8. Neighborhood Measures

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

problexity, Release 0.5.7

Parameters

• X (array-like, shape (n_samples, n_features)) – Dataset

• y (array-like, shape (n_samples)) – Labels

Return type
float

Returns
N4 score

problexity.classification.t1(X, y)
Calculates the Fraction of hyperspheres covering data (T1) metric.

The measure is described by the number of hyperspheres needed to cover the data divided by a number of in-
stances. First, a hypersphere is generated for each problem sample. A sample lies in the center of the hypersphere.
Its radius is dependent on the distance to the instance of another class. The hyperspheres are eliminated if a dif-
ferent hypersphere already covers the center instance. The elimination starts from the hyperspheres with the
largest radiuses and continues to the ones with smaller radiuses. The hyperspheres that were not eliminated are
taken into account during the calculation of complexity.

𝑇1 =
#𝐻𝑦𝑝𝑒𝑟𝑠𝑝ℎ𝑒𝑟𝑒𝑠(𝑇)

𝑛

Parameters

• X (array-like, shape (n_samples, n_features)) – Dataset

• y (array-like, shape (n_samples)) – Labels

Return type
float

Returns
T1 score

23

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

problexity, Release 0.5.7

24 Chapter 8. Neighborhood Measures

CHAPTER

NINE

NETWORK MEASURES

density(X, y) Calculates the Density metric.
clsCoef (X, y) Calculates the Clustering Coefficient metric.
hubs(X, y) Calculates the Hubs metric.

problexity.classification.clsCoef(X, y)
Calculates the Clustering Coefficient metric.

Generates an epsilon-Nearest Neighbours graph. The epsilon value is set to 0.15. The edges are selected based
on the Gower distance between samples, normalized to the range between 0 and 1. Edges between instances of
distinct classes are removed. The neighborhood of each vertex is calculated – the instances directly connected
to it. Then, the number of edges between the sample’s neighbors is calculated and divided by the maximum
possible number of edges between them. The final measure is calculated based on the neighborhood of each
point.

𝐶𝑙𝑠𝐶𝑜𝑒𝑓 = 1− 1

𝑛

𝑛∑︁
𝑖=1

2|𝑒𝑗𝑘 : 𝑣𝑗 , 𝑣𝑘 ∈ 𝑁𝑖|
𝑘𝑖(𝑘𝑖 − 1)

Parameters

• X (array-like, shape (n_samples, n_features)) – Dataset

• y (array-like, shape (n_samples)) – Labels

Return type
float

Returns
Clustering Coefficient score

problexity.classification.density(X, y)
Calculates the Density metric.

Generates an epsilon-Nearest Neighbours graph. The epsilon value is set to 0.15. The edges are selected based
on the Gower distance between samples, normalized to the range between 0 and 1. Edges between instances of
distinct classes are removed. The measure calculates the number of edges in the final graph divided by the total
possible number of edges.

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = 1− 2|𝐸|
𝑛(𝑛− 1)

Parameters

• X (array-like, shape (n_samples, n_features)) – Dataset

25

https://docs.python.org/3/library/functions.html#float

problexity, Release 0.5.7

• y (array-like, shape (n_samples)) – Labels

Return type
float

Returns
Density score

problexity.classification.hubs(X, y)
Calculates the Hubs metric.

Generates an epsilon-Nearest Neighbours graph. The epsilon value is set to 0.15. The edges are selected based
on the Gower distance between samples, normalized to the range between 0 and 1. Edges between instances of
distinct classes are removed. The neighborhood of each vertex is obtained – the instances directly connected
to it. The measure scores each sample by the number of connections to neighbors, weighted by the number of
connections the neighbors have.

𝐻𝑢𝑏𝑠 = 1− 1

𝑛

𝑛∑︁
𝑖=1

ℎ𝑢𝑏(𝑣𝑖)

Parameters

• X (array-like, shape (n_samples, n_features)) – Dataset

• y (array-like, shape (n_samples)) – Labels

Return type
float

Returns
Hubs score

26 Chapter 9. Network Measures

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

CHAPTER

TEN

SMOOTHNESS MEASURES

s1(X, y[, normalize]) Calculates the output distribution (S1) measure.
s2(X, y[, normalize]) Calculates the input distribution (S2) measure.
s3(X, y[, normalize]) Calculates the error of nearest neighbor regressor (S3)

measure.

problexity.regression.s1(X, y, normalize=True)
Calculates the output distribution (S1) measure.

Calculates complexity based on a similarity of instances adjacent in minimum spanning tree (MST). Returns
the average difference of labels (y), of samples connected by MST. By default a 0-1 interval normalization is
performed.

𝑆1 =
1

𝑛

∑︁
𝑖,𝑗∈𝑀𝑆𝑇

|𝑦𝑖 − 𝑦𝑗 |

Parameters

• X (array-like, shape (n_samples, n_features)) – Dataset

• y (array-like, shape (n_samples)) – Labels

Return type
float

Returns
S1 score

problexity.regression.s2(X, y, normalize=True)
Calculates the input distribution (S2) measure.

Calculates complexity based on a similarity of features (X) of instances with close output values (y). Returns
the average euclidean norm of difference of input values, of samples neighbouring after sorting them by output
values. By default a 0-1 interval normalization is performed.

𝑆2 =
1

𝑛

𝑛∑︁
𝑖=2

||𝑥𝑖 − 𝑥𝑖−1||2

Parameters

• X (array-like, shape (n_samples, n_features)) – Dataset

• y (array-like, shape (n_samples)) – Labels

Return type
float

27

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

problexity, Release 0.5.7

Returns
S2 score

problexity.regression.s3(X, y, normalize=True)
Calculates the error of nearest neighbor regressor (S3) measure.

Returns mean squared error of a 1-nearest neighbor regressor, established during leave-one-out procedure. By
default, the data in normalized with 0-1 interval normalization.

𝑆3 =
1

𝑛

𝑛∑︁
𝑖=1

(𝑁𝑁(𝑥𝑖)− 𝑦𝑖)
2

Parameters

• X (array-like, shape (n_samples, n_features)) – Dataset

• y (array-like, shape (n_samples)) – Labels

Return type
float

Returns
S3 score

28 Chapter 10. Smoothness Measures

https://docs.python.org/3/library/functions.html#float

CHAPTER

ELEVEN

COMPLEXITY CALCULATOR

ComplexityCalculator([metrics, colors, ...]) Complexity Calculator Class.

class problexity.ComplexityCalculator(metrics=None, colors=None, ranges=None, weights=None,
mode='classification', multiclass_strategy='ovo')

Bases: object

Complexity Calculator Class.

A class that allows to determine all or selected metrics for a given data set. The report can be returned both as a
simple vector of metrics, as well as a dictionary containing all set parameters and visualization in the form of a
radar.

Parameters

• metrics (list, optional (default=all the metrics avalable in
problexity)) – List of classification complexity measures used to validate a given
set.

• mode (string, optional (default=classification)) – Recognition task for which
metrics should be calculated. Might be selected between classification and regression.

• multiclass_strategy (string, optional (default=ova)) – Strategy used for mul-
ticlass metric integration. Might be selected between ova and ovo.

• ranges (dict, optional (default=all the default six groups of
metrics)) – Configuration of radar visualisation, allowing to group metrics by color.

• colors (list, optional (default=six-color palette)) – List of colors assigned
to groups on radar visualisation.

• weights (list, optional (default=list of weights, where weight are
equal to 1 for all measures where simpler problems have smaller
value, otherwise -1)) – List of weights taken into account in score() procedure.

Variables

• complexity (list) – The list of all the scores acquired with metrics defined by metrics list.

• n_samples (int) – The number of samples in the fitted dataset.

• n_features (int) – The number of features of the fitted dataset.

• n_classes (int) – The number of classes in the fitted dataset.

• classes (array-like, shape (n_classes,)) – The class labels.

29

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

problexity, Release 0.5.7

• prior_probability (array-like, shape (n_classes,)) – The prior probability of
classes.

Examples

>>> from problexity import ComplexityCalculator
>>> from sklearn.datasets import make_classification
>>> X, y = make_classification()
>>> cc = ComplexityCalculator().fit(X, y)
>>> print(cc.complexity)
[0.3158144010174404, 0.1508882806154997, 0.005974480517635054, 0.57, 0.0,
0.10518058962953956, 0.1, 0.07, 0.135, 0.48305940839428635, 0.27, 0.11,
1.0, 0.9642, 0.9892929292929293, 0.9321428571428572, 0.9297111755529109,
0.2, 0.16, 0.8, 0.0, 0.0]
>>> report = cc.report()
>>> print(report)
{

'n_samples': 100, 'n_features': 20, 'n_classes': 2,
'classes': array([0, 1]),
'prior_probability': array([0.5, 0.5]),
'score': 0.377,
'complexities':
{

'f1': 0.316, 'f1v': 0.151, 'f2': 0.006, 'f3': 0.57, 'f4': 0.0,
'l1': 0.105, 'l2': 0.1, 'l3': 0.07,
'n1': 0.135, 'n2': 0.483, 'n3': 0.27, 'n4': 0.11, 't1': 1.0, 'lsc': 0.964,
'density': 0.989, 'clsCoef': 0.932, 'hubs': 0.93,
't2': 0.2, 't3': 0.16, 't4': 0.8, 'c1': 0.0, 'c2': 0.0

}
}

fit(X, y)
Calculates metrics for given dataset.

Parameters

• X (array-like, shape (n_samples, n_features)) – The training input samples.

• y (array-like, shape (n_samples,)) – The training input labels.

Return type
ComplexityCalculator class object

Returns
ComplexityCalculator class object.

plot(figure, spec=(1, 1, 1))
Returns integrated score of problem complexity

Parameters

• weights (matplotlib figure object) – Figure to draw radar on.

• spec (tuple, optional (default=(1,1,1))) – Matplotlib subplot location.

Return type
object

Returns
Matplotlib axis object.

30 Chapter 11. Complexity Calculator

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#object

problexity, Release 0.5.7

report(precision=3)
Returns report of problem complexity

Parameters
precision (int, optional (default=3)) – The rounding precision.

Return type
dict

Returns
Dictionary with complexity report

Examples

>>> from problexity import ComplexityCalculator
>>> from sklearn.datasets import make_classification
>>> X, y = make_classification()
>>> cc = ComplexityCalculator().fit(X, y)
>>> report = cc.report()

(continues on next page)

31

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

problexity, Release 0.5.7

(continued from previous page)

>>> print(report)
{

'n_samples': 100, 'n_features': 20, 'n_classes': 2,
'classes': array([0, 1]),
'prior_probability': array([0.5, 0.5]),
'score': 0.377,
'complexities':
{

'f1': 0.316, 'f1v': 0.151, 'f2': 0.006, 'f3': 0.57, 'f4': 0.0,
'l1': 0.105, 'l2': 0.1, 'l3': 0.07,
'n1': 0.135, 'n2': 0.483, 'n3': 0.27, 'n4': 0.11, 't1': 1.0, 'lsc': 0.

→˓964,
'density': 0.989, 'clsCoef': 0.932, 'hubs': 0.93,
't2': 0.2, 't3': 0.16, 't4': 0.8, 'c1': 0.0, 'c2': 0.0

}
}

score()

Returns integrated score of problem complexity

Parameters
weights (array-like, optional (default=None), shape (n_metrics)) – Op-
tional weights of metrics.

Return type
float

Returns
Single score for integrated metrics

32 Chapter 11. Complexity Calculator

https://docs.python.org/3/library/functions.html#float

CHAPTER

TWELVE

ABOUT US

The problexity package was created for the needs of the Department of Systems and Computer Networks, Wrocław
University of Science and Technology, as part of research projects regarding Multiobjective Optimization and its code
is used for experimental evaluation since 2022.

The main author and maintainer of its current version is the employees of the unit, namely J. Komorniczak.

33

http://kssk.pwr.edu.pl
https://www.kssk.pwr.edu.pl/komorniczak

problexity, Release 0.5.7

34 Chapter 12. About us

CHAPTER

THIRTEEN

CITATION POLICY

If you use problexity in a scientific publication, We would appreciate citation to the following papers, including intro-
duction of library and original introduction of used measures:

@article{komorniczak2023problexity,
title={problexity—An open-source Python library for supervised learning problem␣
→˓complexity assessment},
author={Komorniczak, Joanna and Ksieniewicz, Pawe{\l}},
journal={Neurocomputing},
volume={521},
pages={126--136},
year={2023},
publisher={Elsevier}
}

@article{lorena2018complex,
title={How complex is your classification problem},
author={Lorena, A and Garcia, L and Lehmann, Jens and Souto, M and Ho, T},
journal={A survey on measuring classification complexity. arXiv},
year={2018}
}

The problexity is a python library containing the implementation of metrics describing the complexity of the clas-
sification problem. The implementation was based on the publication of Lorena et al.

You can read more about it in the User Guide.

35

problexity, Release 0.5.7

36 Chapter 13. Citation policy

CHAPTER

FOURTEEN

GETTING STARTED

To use the problexity package, it will be absolutely useful to install it. Fortunately, it is available in the PyPI repository,
so you may install it using pip:

pip install -U problexity

You can also install the module cloned from Github using the setup.py file if you have a strange, but perhaps legitimate
need:

git clone https://github.com/w4k2/problexity.git
cd problexity
make install

37

problexity, Release 0.5.7

38 Chapter 14. Getting started

CHAPTER

FIFTEEN

API DOCUMENTATION

Precise API description of all the classes and functions implemented in the module.

See the README for more information.

39

https://github.com/w4k2/problexity/blob/master/README.md

problexity, Release 0.5.7

40 Chapter 15. API Documentation

PYTHON MODULE INDEX

p
problexity, 29
problexity.classification, 25
problexity.regression, 27

41

problexity, Release 0.5.7

42 Python Module Index

INDEX

C
c1() (in module problexity.classification), 5
c1() (in module problexity.regression), 7
c2() (in module problexity.classification), 5
c2() (in module problexity.regression), 7
c3() (in module problexity.regression), 8
c4() (in module problexity.regression), 8
clsCoef() (in module problexity.classification), 25
ComplexityCalculator (class in problexity), 29

D
density() (in module problexity.classification), 25

F
f1() (in module problexity.classification), 11
f1v() (in module problexity.classification), 11
f2() (in module problexity.classification), 12
f3() (in module problexity.classification), 12
f4() (in module problexity.classification), 12
fit() (problexity.ComplexityCalculator method), 30

H
hubs() (in module problexity.classification), 26

L
l1() (in module problexity.classification), 17
l1() (in module problexity.regression), 18
l2() (in module problexity.classification), 17
l2() (in module problexity.regression), 18
l3() (in module problexity.classification), 18
l3() (in module problexity.regression), 15
lsc() (in module problexity.classification), 21

M
module

problexity, 29
problexity.classification, 5, 9, 11, 17, 21, 25
problexity.regression, 7, 15, 18, 27

N
n1() (in module problexity.classification), 21

n2() (in module problexity.classification), 22
n3() (in module problexity.classification), 22
n4() (in module problexity.classification), 22

P
plot() (problexity.ComplexityCalculator method), 30
problexity

module, 29
problexity.classification

module, 5, 9, 11, 17, 21, 25
problexity.regression

module, 7, 15, 18, 27

R
report() (problexity.ComplexityCalculator method), 31

S
s1() (in module problexity.regression), 27
s2() (in module problexity.regression), 27
s3() (in module problexity.regression), 28
s4() (in module problexity.regression), 15
score() (problexity.ComplexityCalculator method), 32

T
t1() (in module problexity.classification), 23
t2() (in module problexity.classification), 9
t2() (in module problexity.regression), 16
t3() (in module problexity.classification), 9
t4() (in module problexity.classification), 9

43

	Quick start guide
	Installation
	Minimal processing example

	Class Imbalance Measures
	Correlation Measures
	Dimensionality Measures
	Feature-based Measures
	Geometry Measures
	Linearity Measures
	Classification measures
	Regression measures

	Neighborhood Measures
	Network Measures
	Smoothness Measures
	Complexity Calculator
	About us
	Citation policy
	Getting started
	API Documentation
	Python Module Index
	Index

